

### Principles of Detection and Characteristics of Photosensors

Sergey Vinogradov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia Division of Solid State Physics

> National Research Nuclear University «MEPhI», Moscow, Russia Laboratory of Silicon Photomultipliers

Sergey Vinogradov

#### Outline

- My focus: probabilistic consideration of detection and detectors
  - Photon-number-resolving photodetectors
    - Silicon Photomultipliers (SiPM)

#### Flux of photons – stochastic process Number of photons – random variable





Probability distribution of number of photons in space

Probability distribution
 of a random variable fully
 characterize the random variable



Sergey Vinogradov

### **Detection of photons – stochastic process Detector response (photoelectrons) – random variable**



- Statistical results of photodetection: Ο
- 1. Random number of photoelectrons
- in a time interval (pulse duration) N
- => Energy resolution
- 2. Random time of the pulse arrival T
- Time resolution

Pr(T = t)**Probability distribution of** 

the response arrival time

Spatial resolution ~ pixel / detector size (non-random) in the most of photodetector designs

Sergey Vinogradov

SENSE Detector School, Ringberg, 19 June 2019



#### Ultimate photon detection at quantum level



Sergey Vinogradov

5

### Input-dependent characteristics of output (SNR, RES) Internal characteristics of photodetection (DQE, ENF)



## Resolution (RES) and Excess Noise Factor (ENF) of stochastic processes in photodetection



Resolution at output = Total ENF-times degraded Resolution at input
 Total ENF is a product of Specific ENFs



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

## Resolution of single photon requires detection with Gain

Input: single photon  $\mu_{in} \equiv 1$ ,  $\sigma_{in} \equiv 0$ Output: some total signal  $\mu_{\tau}$ ,  $\sigma_{\tau}$ Total signal is a sum of photosignal ( $\mu_s, \sigma_s$ ) and electronic noise (0,ENC) ENC - equivalent noise charge (electrons) Single photon resolution demands for Gain: Mean photosignal > Noise => Gain > ENC (FWHM)  $RES = \frac{\sigma_T}{\mu_S} = \frac{\sqrt{\sigma_S^2 + ENC^2}}{\mu_S} \bigg|_{Ideal: \sigma_S = 0} = \frac{ENC}{\mu_S} = \frac{ENC}{Gain}$ ENC ~  $10^4$  @ BW ~ 1 GHz or  $\Delta t = 1$  ns ENC ~  $10^2$  @ BW ~ 100 KHz or  $\Delta t = 10 \ \mu s$ FWHM (Gain) Single photon ~  $\delta(1)$ Gain Noise ( $\mu_n$ ,  $\sigma_n$ = ENC)  $Gain = FWHM = 2.35 \sigma_{Gain} =>$ ENF ≈ 1.18 – threshold ENF

#### **ENF of specific detection processes**

• Multiplication (*Xin*=1) *Yout* of any distribution  $\sigma^2$ 

 $ENF_{gain} = 1 + \frac{\sigma_{gain}^2}{\overline{Gain}^2}$ 

Photon detection (Xin=1) Bernoulli distribution

$$ENF_{pde} = 1 + \frac{PDE \cdot (1 - PDE)}{PDE^2} = \frac{1}{PDE}$$

Dark counts (*Xin=Npe*)Npe and Ndark ~ Poisson distribution

$$ENF_{dark} = 1 + \frac{N_{dark}}{N_{pe}}$$



#### **Resolution of photodetector for Poisson photons**

Incident photons - Poisson ( $N_{ph}$ ); Output signal - electrons - ( $\mu_{out}, \sigma_{out}$ )

 $\mu_{out} = N_{ph} \cdot PDE \cdot Gain \qquad \sigma_{out}^{2} = N_{ph} \cdot PDE \cdot Gain^{2} \cdot ENF + ENC^{2}$  $RES_{out} = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE} + \frac{ENC^{2}}{\left(N_{ph} \cdot PDE \cdot Gain\right)^{2}}}$ 

- *PDE* Photon Detection Efficiency ENC – Equivalent Noise Charge, electrons  $ENC \sim 10^4 @ BW \sim 1GHz$
- Contributions:
  - Shot noise of photoelectrons
  - Excess noise of multiplication
  - Electronic noise ENC

#### Ideal photon detector:

- $\checkmark$  PDE = 100%
- $\checkmark ENC / Gain \rightarrow \theta$
- $\checkmark$  ENF = 1

$$RES_{out} = RES_{in} = \sqrt{\frac{1}{N_{ph}}}$$



#### **Optimization of Photodiode**

90

60

50

% 80

Квантовая эффективность,

$$RES_{out} = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \cdot Gain\right)^2}$$

- Focus on max *QE* and large signals  $\checkmark$ 
  - ✓ *Nph* >> *ENC*
  - $\checkmark$  Gain = 1, ENF = 1
  - $\checkmark$  PDE ~ 80% 90%.

$$RES(N_{ph}) = \sqrt{\frac{1}{N_{ph} \cdot PDE}}$$



#### **Optimization of Avalanche Photodiode (APD)**

$$RES(N_{ph}) = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \cdot Gain\right)^2}$$

✓ Focus on optimal balance: Gain vs ENF<sub>Gain</sub>



Optimal gain ~ 30 – typical practical value



Nn

(n)

- k=0

100

Anode

0

Sergey Vinogradov

Excess noise factor vs APD gain

for various semiconductors

Ec

(p) — E<sub>v</sub>

Pp

W, GE

х

Cathode

#### **Optimization of vacuum photomultiplier**

$$RES(N_{ph}) = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \cdot Gain\right)^2}$$

#### Focus on max <u>QE</u>:

- Gain >> ENC  $\checkmark$
- $ENF \approx 1.1...1.3$  is determined by dynode emission of ~ 4 electrons  $\checkmark$



*QE* ~ 20% - 30%  $\checkmark$ 



#### **Optimization of Geiger mode APD array**

$$RES(N_{ph}) = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \cdot Gain\right)^2}$$



1. Focus on triggering of Geiger breakdown and binary detection of single photons

$$\begin{split} RES(N_{ph}) &= \sqrt{\frac{1}{N_{ph}} \cdot PDE} \\ \\ N_{ph} \leq 1 \\ PDE &= FF \cdot QE \cdot P_{AV} \\ FF - \text{fill factor, geometric effciency} \\ FF &= \text{Active Area / Total Area} \\ QE - \text{quantum effciency} \\ P_{AV} - \text{probability of avalanche} \end{split}$$



A. Tosi, F. Zappa, MiSPiA: microelectronic single-photon 3D imaging arrays, Proc. SPIE (2013)

Sergey Vinogradov

#### **Optimization of Geiger mode APD array**

$$RES(N_{ph}) = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \cdot Gain\right)^2}$$



<u>2. Focus on active quenching of Geiger breakdown</u> (electronics => inactive area)



A. Tosi, F. Zappa, MiSPiA: microelectronic single-photon 3D imaging arrays, Proc. SPIE (2013)

Sergey Vinogradov

#### **Silicon Photomultiplier**

$$RES(N_{ph}) = \frac{\sigma_{out}}{\mu_{out}} = \sqrt{\frac{ENF}{N_{ph} \cdot PDE}} + \frac{ENC^2}{\left(N_{ph} \cdot PDE \left(Gain\right)^2\right)}$$



#### ✓ Focus on high Gain low excess noise Geiger breakdown



[Model] D. Shushakov, V. Shubin, Proc. SPIE (1995) [Experiment] K. Linga, E. Godik, J. Krutov, D.A. Shushakov, V. Shubin, S. Vinogradov, E. Levin, Proc. SPIE (2006)

Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

SENSE Detector School, Ringberg, 19 June 2019

16

### SiPM concept: Basic studies at Lebedev Physical Institute (1970s-1990s)

- Avalanche with Negative Feedback (ANF) concept:
  - Avalanche development by strong positive feedback
    → Geiger mode avalanche breakdown with high overvoltage
  - Avalanche quenching by strong negative feedback
    - → Passive quenching by built-in elements (ANF APD) Capacitive (feedback ~ avalanche charge) Resistive (feedback ~ avalanche current)

ANF => High gain + Low noise + Fast time





V. Shubin, D. Shushakov, Encyclopedia of Optical Engineering 2003; DOI: 10.1081/E-EOE 120009727

Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

SENSE Detector School, Ringberg, 19 June 2019 17

#### Кремниевый фотоумножитель Silicon Photomultiplier (SiPM)



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

### **Correlated avalanche events:** SiPM crosstalk (CT) $\rightarrow ENF_{CT}$





#### A. Lacaita et al., IEEE TED, 1993



50 mV

# Correlated avalanche events: SiPM afterpulsing (AP) $\rightarrow ENF_{AP}$

• Afterpulsing: electron/hole trapping – emission – new avalanche



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

20

### SiPM nonlinearity: Random losses $\rightarrow ENF_{NL}$

- Нелинейность => потери фотонов =>  $ENF_{NL}$  ENF => деградация разрешения Nph
- Нелинейность SiPM:
  - 1) Из-за ограниченного числа ячеек  $ENF_{NL-PIX}$
  - ◆ 2) Из-за мертвого времени (восстановления ячейки) *ENF*<sub>NL-DEAD</sub>









Sergey Vinogradov

#### **Detective Quantum Efficiency (DQE)**



ВОЧ

10

 $10^{-3}$ 

k

0.1

 $k 10^5 k$ 

107

 $10^{3}$ 

k

#### Main trends in SiPM R&D

- 1. Max *QE*,  $P_{AV} => max$  PDE & DQE beneficial for any applications and designs
- 2. High DQE (~ in a limited Dynamic Range)
  - «Big cells», "Scientific SiPM"
- 3. High Dynamic Range (~ with a limited DQE)
  - «Small cells», "HDR / UHDR SiPM"



### DQE of photodetectors: Map of competitiveness

• Detection of 10 ns pulse @ max spectral sensitivity



### Evolution of CCD/CMOS imagers



• In 2017, 0.9 um pixel began to be mass produced.



Sergey Vinogradov

Ο

Principles of Detection and Characteristics of Photosensors

### Pinned Photodiode (PPD) and modern CMOS imagers





**Fill Factor Recovery: Microlenses** 

Quantum efficiency (%)

Fig. 2. Pixel architecture and cross section of the pinned photodiode used as a reference.  $L_{TG}$  is the transfer gate length and  $L_{PPD}$  is the PPD length.





#### CMOS QE:

triangles – front-side illumination without microlenses, circles – front-side illumination with microlenses, dashed line – back-side illumination imager, solid line – back-side illumination imager IMEC

Y. Bai, et al "Silicon CMOS imaging technologies", Proc. SPIE 2008

### Quantum Image Sensor: photon-number-resolving CMOS imager (Eric Fossum)

- Sensing node size < 500 nm !!!
- $\bigcirc \quad \text{Gain} \sim C/q \sim 1 \text{mV/e}$
- Noise ~ 0.15 e RMS
- => ENF < 1.02



FIGURE 2. A Dartmouth QIS test chip contains 20 different 1 Mjot QIS arrays and was fabricated by TSMC in a modified 45/65 nm 3D-stacked BSI CIS process.



J. Ma et al., Photon-number-resolving megapixel image sensor at room temperature without avalanche gain, C E. Fossum, Advances in Detectors: The Quanta image sensor (QIS): Making every photon count, Laser Focus

Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors SENSE Detector School, Ringberg, 19 June 2019 27

#### **Characterization of photon-number-resolving detectors**

#### • Characterization of SiPM and photon-number-resolving detectors

Sergey Vinogradov

Photon Detection Efficiency ~ probability to detect single photon

- Absolute calibration of PDE of your photodetector
  - ◆ 1. "Single photon-on-demand" source or
  - ◆ 2. "Paired photons" down conversion technique (Alan Migdal, NIST)



Photon Detection Efficiency ~ probability to detect single photon

**O** Reference calibration of PDE of your photodetector

- ◆ 3. <u>Calibrated</u> photodetector and uncalibrated <u>Poisson</u> light source
  - From metrology center (e.g. NIST) (PIN or others e.g. SiPM)
  - Zero-peak method is recognized as the best for SiPM
  - Attention to integration time TBD

Poisson photons  $\mu_N$  with dark counts  $\mu_D$ DUT:

$$P_{DUT}(N_{N+D}=0) = e^{-(\mu_N P D E_{DUT} + \mu_D)}$$

 $P_{DUT}(N_D=0) = \mathrm{e}^{-\mu_D}$ 

$$PDE_{DUT} = -\frac{1}{\mu_N} \ln \left[ \frac{P_{DUT}(N_{N+D} = 0)}{P_{DUT}(N_D = 0)} \right]$$

Reference detector:

$$\mu_{N} = -\frac{1}{PDE_{REF}} \ln \left[ \frac{P_{REF}(N_{N+D} = 0)}{P_{REF}(N_{D} = 0)} \right]$$



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors S

#### ICASiPM-2018

## Swapping Sensors vs. Optical Splitter



#### Pro:

- Measure reference and DUT simultaneously

#### Contra:

- Possible wavelength dependent splitting ratio
- Photons can trickle out over long time from integrating sphere



#### Pro:

- no beam splitter

#### Contra:

- reference and DUT need to be measured in sequence
- → need a monitoring device

## ICASiPM-2018 Summary of the Photon Detection Efficiency Working Group

## **Proposed Standard Setup**

Use calibrated SiPM as reference (i.e. no PiN diode) → splitting ratio of ~ 1
 Standard "PDE Box"



#### **Characterization: Gain**

• <u>Gain</u>: Mean Gain and Variance of Gain (ENF)

• Mean =  $Gain = \mu_1 - \mu_0$  = distance between peaks (0-1, 1-2...)



#### **Characterization: ENF of Gain**

$$ENF_{gain} = 1 + \frac{\sigma_{gain}^2}{\overline{Gain}^2}$$

- Variance =  $Var(Gain) = \sigma_{Gain}^2 = \sigma_1^2 \sigma_0^2$ 
  - Correct if zero-peak dispersion is exclusively due to electronic noise
  - Baseline fluctuations of zero-peak due to preceding dark events (TBD)







Sergey Vinogradov

#### **Characterization: crosstalk**

• Crosstalk events initiated by a single primary avalanche event

50 mV

#### Counting mode

| <u>F</u> ile | <u>E</u> dit | <u>V</u> ertical | H <u>o</u> riz/Acq | Irig | <u>D</u> isplay | <u>C</u> ursors | Mea <u>s</u> ure          | <u>M</u> ath | Utilities | <u>H</u> elp                          |
|--------------|--------------|------------------|--------------------|------|-----------------|-----------------|---------------------------|--------------|-----------|---------------------------------------|
| Tek          | Run          | Pk Detect        |                    |      |                 |                 | 26                        | Jul 07 13    | :07:43    | Buttons                               |
|              |              |                  |                    |      |                 |                 |                           |              |           | Curs1 Pos                             |
|              |              |                  |                    |      |                 |                 |                           |              |           | 17.2mV                                |
|              |              |                  |                    |      |                 |                 |                           |              |           | Curs2 Pos                             |
|              |              |                  |                    |      |                 |                 |                           |              |           | 5.6mV                                 |
|              |              |                  |                    |      |                 |                 |                           |              |           | V1: 17.2mV<br>V2: 5.6mV<br>ΔV:-11.6mV |
|              |              |                  |                    |      |                 |                 |                           |              |           | - Wfms(Hs) 3.904kwfm<br>μ: 3.7773531k |
|              |              |                  |                    |      |                 |                 |                           |              |           | Hits(Hs) 58.27Mhits<br>µ: 56.38242M   |
|              |              | -                |                    |      |                 | a sector        |                           |              |           | Mean(Hs) 13.67mV<br>µ: 13.671471m     |
|              |              |                  |                    |      |                 |                 |                           |              |           | Std Dev(Hs) 3.744mY<br>µ: 3.7443672m  |
|              |              | analang u        |                    |      |                 |                 |                           |              |           | High(C3) 50.2mV<br>µ: 53.187469m      |
| Chi          | 3 10         | .0m∀ Ω           |                    |      |                 | M 400<br>A Ch4  | 0µs 25.0MS/s<br>4 7 140mV | 40.0ns/p     | t 1.6µs   |                                       |

### Triggering mode



# Characterization: crosstalk initiated by non-random primary



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors

# Characterization: crosstalk initiated by Poisson primaries

 Crosstalk initiated by Poisson primaries =>
 Photo- and CT events in the 1<sup>st</sup>

peak are independent

 $P(1) = Ppois(1) \cdot Pct(0)$ 

 $Multiphoton \ histogram$  $P(1) = Ppoisson(1) \cdot (1 - Pct)$  $Pct = 1 - \frac{P(1)}{Ppoisson(1)}$ 

Output Charge Distribution Histogram for multiphoton pulse detection



Sergey Vinogradov

# Characterization: afterpulsing by histogram of interarrival times

- Common-sense analysis of correlated events
- Contributions are fitted separately in specific time frames
  - Correctness of expressions as a sum of fast + slow AP (?order statistics?)



## Characterization: afterpulsing by cumulative distribution of interarrival times



Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors SENSE Detector School, Ringberg, 19 June 2019 39

#### **Characterization: afterpulsing** by cumulative distribution of interarrival times

 $F_{corr}(t, P_{corr}) = 1 - (1 - F_{total}(t, N_{ph}, DCR)) \cdot \exp(DCR \cdot t)$ 

1E-8

t, s

1E-7



Total number of afterpulsing events could be of the geometric distribution with Pcorr.

S. Vinogradov, NSS/MIC 2016

Experimental example - courtesy of E. Popova, D. Philippov, NSS/MIC 2016

1E-9

Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors SENSE Detector School, Ringberg, 19 June 2019

1E-6

## Joint characterization of CT & AP by CCDF time distribution

#### Seamless measurement of CT+AP at short times:

Q(t) instead of I(t) measurement of time interval from primary to secondary event





Ultimate Low-Light Level Sensor Development

#### The end

#### Thank you for your attention!

Questions? Objections? Opinions?

#### <u>vin@lebedev.ru</u>

Sergey Vinogradov

Principles of Detection and Characteristics of Photosensors SENSE Detector School, Ringberg, 19 June 2019 42